
T .

w

w

N93-1B385
Design of a Lattice-Based Faceted Classification System

David Eichmann John Atldns

Dept. of Statistics and Computer Science
West Virginia University
Morgantown, WV 26506

Abstract We describe a software reuse architecture

supporting component retrieval by facet classes. The
facets are organized into a lattice of facet value sets and
facet n-tuples. The query mechanism supports both pre-
cise retrieval and flexible browsing.

"_=_' 1. Introduction

-- There are many obstacles in the path to development

of a practical and useful software reuse environment.

-- Retrieval of"suitable" reuse candidates from a collection

-- of possibly thousands of components is a particularly

f significant obstacle. We describe the design of a compo-

nent classification scheme and its associated query

mechanism. The classification scheme is based upon a

lattice of facet values and facet tuples. The query mecha-

._ nism uses type inference rules to locate and retrieve those

components whose classifications in the lattice are sub-

= - types of the query specification.

-., 1 .I. Software Reuse

Reuse has long been an accepted principle in many

scientific disciplines. Engineers make design decisions

on the availability of components that facilitate product

. development, biologists use establishedlaboratory instru-

ments and chemists use standardized measuring devices

to record experimental results. It would be unthinkable

for an engineer to "design and develop" the transistor

___ every time that a transistor is requited in an electrical

instrument. Computer scientists, however, are guilty of a

.... comparable practice in their discipline: software reuse is

--- not widely practiced in the computer science field. Gen-

erally, the reasons are:

I. Development standards have not been established

•-" for software;

_ : This work was supported in part by a grant from
MountainNet Inc. as part of the Ada.Net project under
NASA cooperative agreement NCC9-16.

: PRECEDING PAGE

2. There is a pervasive belief that if it is "not developed

here", it can't be used by "us";

3. Software is all too often developed with respect to a

specific requirement with no consideration given to

reuse in other environments;

4. Many languages encourage constructs that are not

conducive to reuse;

5. Software Engineering principles are not widely prac-

ticed and consequently, requirements and design

documents often are not available with the code; and

6. No widely accepted methodology has been deveI-

oped to facilitate the identification and access of

reusable components.

Regardless of the reasons for not developing soft-

ware for eventual reuse, the spiraling cost of new soft-

ware development is mandating an increased interest in

software reuse. It has been estimated that in 1990 alone,

the output of source code will be 15.3 billion lines of

code [11]. With the minimal effort to reuse existing soft-

ware, it is natural to ask what percentage of this enor-

mous number of lines of code will represent duplication

of effort. It has been estimated that only 30 to 40% of

this code will represent novel applications while 60 to

70% of the code will apply to generic computer tasks

such as data entry, storage, sorting, searching, etc.

Although there are no def'mitive answers as yet to

the software reuse problem, there is substantial ongoing

research on the problem. One area of research is to iden-

tify characteristics of software components that enhance

the reuse potential of the component in terms of its bind-

ings to other modules [3]. Another area of research is to

identify techniques that can be used to translate a soft-

ware component that has marginal reuse potential to one

that can be easily incorporated into a larger system. A

third research ar6a relative to software reuse that has

been extensively studied is that of identifying metrics

that measure software complexity. An example of this is

90

BLANK

Second International Conference on Software
Engineering and Knowledge Engineering, Skokie, IL,
June 21-23, 1990, pages 90-97.

NOT FILMED

McCabe'sComplexity metric. A very recent area of re-

search in software reuse is that of the problem of classi-

fying software in order to identify and access the soft-

ware [4], [12]. The most promising classification method

for software reuse is the Faceted Classification System.

This methodology has been studied extensively by
Prieto-Diaz and forms the basis for the methodology

presented in this paper.

1.2. Faceted Classification

The faceted classification methodology, as studied

by Prieto-Diaz, begins by using Domain Analysis "to

derive faceted classification schemes of domain specific

objects" [13]. This process relies on a library notion

known as Literary Warrant. Literary Warrant collects a

representative sample of rifles Which are to be classified

and extracts descriptive terms to serve as a grouping

mechanism for the rifles. From this process, the classifier

not only derives terms for grouping but also identifies a

vocabulary that serves as values within the groups.

From the software perspective, the groupings or fac-

ets become a taxonomy for the software. Using Literary

Warrant, Prieto--Diaz has identified six facets that can be

used as a taxonomy [14]. These facets are: Function, Ob-

ject, Medium, System Type, Funetibnal _ and Setting.

Every software component is classified by assigning a

value for each facet for that component. For example, a

software component in a Relational Database Manage-

ment System that parses expressions might be classified

with the tuple

(parse, expression, stack, interpreter, DBMS,).

Thus, the Function facet value for this component is

"parse", the Object facet value is "expression", etc. Note

that no value has been assigned for the Setting facet as

this software component does not seem to have an appro-

priam value for the Setting facet.

The software renser locates software components in

a faceted reuse system by specifying facet values that are

descriptive of the software desired. For example, if we

are using Prieto--Diaz's facets, suppose that we wish to

f'md a software component to format text. We might

query the system by constructing the tuple

(format, text, file, file handler, word processor, *).

Note that the asterisk for the value for the Setting facet

acts as a wild card in the query which indicates that there

is no constraint on that facet. If the query results in one
or more "hits", then the tenser Chooses from the hits the

particular software component that best fits the desired

need. The problem arises if no hits are obtained or if the

91

software that is identified is not appropriam to the needs
le

of the reuser. One solution is to weaken the query by

relaxing one or more constraints by replacing a facet

value with a wild card. For.example, if the Functional
Area facet has the least significance to the required need,

the reuser could again pose the query with the tuple =

(format, text, file, file handler, ", ")- --ll
This process of weakening the query continues until a

suitable component is retrieved.

An alternative method to continue the search after

initial query is known as the method of "conceptual

closeness." In this method, pairs of facet values for the

same facet have numeric values associated wi-h them ,-

that in a sense measures their "degree of sameness." For

example, the two facet values "delete" and "remove"

would be very close in meaning and hence would have aW

metric value close to 0 indicating their semandc close-

ness. However, the two values "add" and "format" for

Function have little in common and hence would have a-

closeness value nearer to 1. In this method, the system

assumes the responsibility for continued searches by

modifying the query by replacing facet values with val-

ues that are "close" in meaning as determined by the

closeness metric. For example, if the facet value "editor

is closer to "word processor" in terms of the metric than

any other value in any facet, then the sysmm poses the

query with the modified tuple ,_

(format, text, file, file handler, editor, ")
and continues in this manner until a hit is ob,.zined.

Although this appears to be a reasonable solution to_

the problem of continued searches, the difficult)' lies in

the need to assign meaningful closeness values to pairs c_

facet values. With a large collection of values, this is a _"

daunting task. However, one solution is suggested by

adapting the work of Kruskal [8] to the conceptual close

hess problem. In this method, a metric is assigned to

pairs of values based on user acceptance of modified _--

queries. The method requkes the use of a two dimen- _

sional matrix for each facet indexed by the facet values

themselves. For example, if an original query mple con-_

sistingof

(format, text, file, file handler, word processor, *)

failed to achieve a hit and the user later accepted a com-_

ponent with the query tuple

(format, text, file, file handler, editor, "),

the matrix corresponding to the FuncdonaI Area facet ="

would have one added to the two matrix cells corre-

sponding to the cntries for "word processor" and "'edi-

J

!

tor". Now if N is .h_ of the total of the cell values in the

-" matrix, then the distance between "word processor" and

. _ "editor" is defined to be 1 - (cell value)/N where the cell

value is the value in either of the entries corresponding to

v the pair "word processor" and "editor". It is clear that

this method requires a large and patient user group in

_ order to establish viable metric values.

- The faceted classification model that we shall de-

--- scribe in tim next section is based on the mathematical

notion of a lattice. The dot-tuition of a lattice requires the

concept of a partial ordering on a set. Thus, a partial or-

-- dering< on a set A is a relation defined on A that saris-

ties three conditions, namely:

a. Reflexive: for all x in A, x < x;

-- b. Antisymmetric: for all x, yinA, ifx<yandy<x,

then x -- y;

.... c. Transitive: for all x, y and z in A, if x < y and y < z,

then x < z.

. For example, the arithmetic comparison "less than or

- - equal" is a partial ordering on the Natural numbers. An-

other example is the subset relation defined on the power

set of a set. It should be noted that a partial ordering on a

set does not guarantee that any two objects in the set can

be compared using the partial ordering. For example, two

arbitrary elements in the power set are not comparable in

the sense that one need be a subset of the other.

A lattice is a set A on which is defined two binary

__ operations, A (meet) and v (join), which satisfy the fol-

_.. lowing:

a. Idempotent: for any in A, x ^ x = x and x v x = x;

b. Commutative: for any x and y in A, x ^ y = y ^ x

andxvy=yvx;

c. Associative: for any x, y and z in A, x ^ (y ^ z) = (x

- ^y) ^zandxv (yv z)= (xv y) v_

& Absorption Law: for any x and y in A, if x < y, then

xvy=yandx^y=x.

Additionally, if for any x, y and z in A, x A (3' V Z) =

(X ^ y) V (X A Z) and x v (y ^ z) = (x v y) ^ (x v z), we

_' say that the lattice is distributive. For example, the power

set with intersection as the meet and union as the join

forms a distributive lattice using the subset partial order.

Let < be a partial ordering on a set A. ff X is a subset

•- of A, we say that an element a in A is a lower bound of X

if a < x for every x in X. A Greatest Lower Bound (GLB)

of X is a lower bound b of X with the property that if a is
atom any other lower bound of X, then a < b. It is clear that if a

GLB exists for a subset X of A, then it must be unique.

92

For example, any subset of elements in the power set has

a GLB consisting of the intersection of all elements in

the subset. In a lattice, any two elements have a GLB

which is just the meet of the two elements, i.e. if x and y

are in a lattice A, then x ^ y < x and x ^ y < y and if z is

any lower bound of both x and y, then z < x ^ y.
There is a dual to lower bounds which is the notion

of upper bounds. An element a is an upper bound for a

set X if x < a for all x in X. A Least Upper Bound (LUB)

of a set X is an upper bound b such that ff a is any other

upper bound, then b < a. For the example of the power

set, a LUB for a set X is the union of all the elements in

the subset. In a lattice, any two elements also have a least

upper bound which is just the join of the two elements.

Thus, for any two elements x and y in A, x < x v y and y

< x v y and if z is any upper bound of both x and y, then

xvy<z.

We note that if A is a set with a partial ordering <

such that any two elements have a GLB and a LUB, then

the set is a lattice where the meet of any two elements is

the GLB of the elements and the join of any two ele-

ments is just the LUB of the elements.

1A. Subt3'_es and Inheritance

The popularity of the Smalltalk programming lan-

guage [9], with its object orientation and built-in type

inheritance, has resulted in a flurry of research in object-

oriented database systems. An obj_t--orient_ database

system is one that is organized around objects and which

communicates through message-passing. O_'erations

(termed methods) are associated with each object in a

database; some of these operations are bound to specific

types of messages for that object- Most message-passing

systems are not strongly typed, but rather perform run-

time type checking. This is done primarily to support

rapid prototyping of applications. Deferring the binding

of an object or message to a type until run- dine reduces

the amount of effort needed to begin exercising an appli-

cation, but it also requires a run-time system that can

handle the errors that may arise.

The object classes in an object--oriented database are

organized into a partial ordering. Object classes inherit

attributes and methods from their ancestors in the order-

ing. Single inheritance schemes restrict a given object

class to at most one immediate ancestor in the partial

ordering. Multiple inheritance schemes allow a given

object class to have any number of immediate ancestors

inthe partial ordering. Cardelli [5] formalizes some of

the semantics of multiple inheritance.

Object--orienteddatabasesystemshaveanumberof
designgoals,someconcerningtyping,butotherscon-
cemingperipheralissues(suchasrapidprototyping).
Thetypesemanticsof object--orientedsystems(including
inheritanceandsubtyping)ispresentinothersystems

which are not based upon message,-passing (e.g., Mor-

pheus [7], Galileo [2]). Such systems are strongly typed,

and hence, as CardeUi and Wegner [6] argue, can pro-

duce more efficient and reliable applications.

Horn [10] introduces the notion of conformance,

allowing one type instance to be treated as ff it we,re an

instance of another type. In a limited sense, this is what

happens with inheritance, but conformance is more gen-

eral. Inheritance requires that this treatment only be al-

lowed when moving up the type hierarchy or lattice.

Inheritance uses a partial ordering of types (by subtype),

plus an implicit definition of existence dependencies be-

tween a given type and its ancestors. Conformance can

hold for arbitrary types, independent of any type ordering

scheme. Such a notion is clearly superior to hierarchies

or lattices for type--related query languages, where inter-

mediate results (derived from existing types, but not part

of the database schema) need to be manipulated.

Inheritance-based systems are, in some sense, navi-

gational. A user querying an object-oriented database

must be aware of the inheritance structure of that specific

database, just as a user querying a network database must
be aware of database structure. Because of their non-

navigational characteristics conformance-based models

promise to gain prominence over inheritance-based mod-

els, just as relational models have over network models.

2, Th_ Reuse Type Lattice"
w

Figure i shows the general structure of the reuse

type lattice. At the top is T, the special universal type

Any value conforms to the universal type. At the botm_

is .t., the void type. These two special types ensure that

any two types in the lattice have a least upper bound an--_

a greatest lower bound, respectively. Between the tmi--_

versal and void types appear the upper and lower bounds

for the two type constructors facet and tuple. Faceto

characterizes the notion of the empty facet type; it con_

lains no values, but is still a facet. Likewise, Facet char-

acterizes the notion of the set of all possible facet valu_ "_

The dotted line between them indicates that an arbitrar_

number of types may appear here in the lattice. For ex-

ample, figure 2 shows the sublattice for facet sets for

examples in section 1.2. l

The tuple sublattice has a similar structure. At the
top is the empty tuple type {), characterizing a tuple w_

ill
T

Faceto {}

Facet tulle

I

Figure 1. The reuse type lattice

Facet<)

Functiono Oblecto Mediumo SystemTypeo FunctionalA.reao Settingo
!

!

!

!

I

|

!

!

!

Function Object Medium SysternType FunctionalArea Setting

Facet

Figure 2. The Sublatdce of Facet Sets

93

W

m

W

m

m

m

J

m

l

B

no facets. At the bottom is tuple, the tuple type with all

_ possible facets.

2.1. Facets vs. Fac_l Value Sets

Traditional retrieval of individual facet values reties

upon maximal conjunction of boolean terms for retrieval

of matches on all facets and maximal disjunction of

boolean terms for matches on any facet of an expression.

In order to fit the notion of facet into the type lattice, we

look at sets of facets. A set of facets corresponds to a

_ conjunctionon allofthefacetscomprisingtheset.Each

set occupies a unique position in the type lattice. We

handle disjunction by allowing a given component to

___: occupy multiple lattice positions. Matching occurs on

any of the positions, providing the same semantics as

disjunction.

.....-2 Facet values are equivalent to enumeration values.

We attach no particular connotation within the type sys-

tem i_ a particular facet value. Values are bound to some

-w semantic concept in the problem domain.

The subset relation is our partial order. The least

value of this portion of the lattice is the set of all facet

_- values from all facets in the problem domain, denoted by

the distinguished name Facet. The greatest value of this

: portion of the lattice is the empty set, denoted by the dis-

tinguished name Faceto. The union operator generates

_ _ the _eatcst lower bound. The intersection operator gen-

t: crates the least upper bound.

3. T3_'pe Inference Rules

-- We begin with a brief remark concerning notation.

In the inference rules that follow, the symbol A repre-

- _ seats an existing set of assumptions. A always contains

the type information generated by the database schema

which implements the repository. It is occasionally ncc-

,_ - essary to extend the set of assumptions with some addi-

_ tional information. A.x denotes the set of assumptions

extended with the fact x. A I" x states that given a set of

"_- assumptions A, x can be inferred. Inferences above the

horizontal line act as premises for the conclusions, the

inferences below the horizontal line. An expression is

_-- well-typed if a type for the expression can be deduced

using the available inference rules, otherwise it is ill-

typed.

3.1. Domain Interval Subtyping
ram#

We adapt the notion of a domain interval [7] t0for-
.... realize our notion of facet value sets. In [7] a subtype

-,- was smaller than its supertype; here the reverse is true, a

subtype is a larger collection of values than its supertype.

A domain interval is a type qualification that explic-

itly denotes the valid subrange(s) for a base type. As-

sume that t is a base type ordered by < (the ordering may

be arbitrary). A domain that is (inclusively) delimited by

two values, a and b, is denoted ta..._. A n6n-inclusive

lower bound is denoted a" and a non-inclusive Ul_3er

bound is denoted by b-. Intervals made up of more than a

single continuous value i-ange are denoted by a set of

ranges, for example, t_,-.b,_...,t,_denotes the interval that

includes the subinterval a through b inclusive, the subin-

terval c through d inclusive, and the singleton value e.

The singleton range • is equivalent to e...e. When we

use such notation we intend thata < b and c <_d, but not

necessarily that b _<e or d _; e. An empty pair of brack-

ets, to, denotes an empty inter,'al, i.e., one which con-

tains no elements. In our particular application, the base

types are f'mite sets of enumeration (facet) values.

Premises concerning membership of interval bound-

ary values (e.g., m and n in (1.1) and (1.2)) are assumed

to be part of the assumptions, and will not be explicidy

mentioned after this. Rule (1.I) provides for subtyping a

AI-me t

A_-ne t

A F m ___n (1.1)

A I- t _<t(m...n)

subrange of some type t; (1.2) does the same for two sub-

AI-met

AVm'_ t

A_'n_t

A _ n' e t (1.2)

A_" m'5 m_<n<n'

A F t(rn'...n') 5 t(m...n)

ranges of some type t. Rule (1.3) extends subtyping to

A F t(ml...nt) -<t(m:...n:)

A I- t(_ ..zi) -_t(m,'...n:) (1.3)

A F t(ml...nl....mi..ai)-_t(mt'...n:,..,_'..a:)

domain intervals,where eachsubintervalinthesubtype

isa s_ubtypeofsome intervalinthesupertypc.

The followingrulesareusedtocombine rangesin

domain intervals.Inrule(1.4),two rangesinaninterval

A I- x " t(.... ,, ..b, b...c,...)

A I- x "t(.... a...c, ...) (1.4)

that share a common endpoint can be combined into a

single range. This 4can also be done when one end point

is inclusive and the other is exclusive (rules (1.5) and

9_,

(1.6)). Overlapping ranges are merged into a single

A l- x:t(.... a...b',b...c)
(1.5)

A l- x : t(..., a...c, ...)

A I- x : t<.... a..b, b'...;...)
(1.6)

A k x : t<.... ,...¢, ...)
range that uses the minimum of the two lower bounds as

the new lower bound and the maximum of the two upper

bounds as the new upper bound in rules (1.7) and (1.8).

A t- x : t(.... a...c,_..d,...)

AI- a_<b_c_< d (1.7)

AFx:t(.... a...d)

Akx':t(.... a...d,b...c)

A F t(a...d) 5 t(b..x) (1.8)

AFx:t(.... a...d)

The next two inference rules deal with unary domain

values. And the last two deal with complete intervals.

At- x:t(.... a, ...)
(i.9)

A I- x : t(.... a...a, ...)

AFx:t(.... a...a,...)
(i.lO)

AI- x : t(.., a, ...)

Akx;t

i F x : t(.**...**) (1.11)

A)-x: k --,_..,=,...)
(i.12)

AFx:t

In order to establish the type of the result of an op-

eration such as union, some notion of domain interval

union is needed. If M and N are two intervals over the

same type, then M u N is constructed by merging the

two sets of ranges making up the intervals, and using the

domain inference rules described above to reduce the

result.

A I- x : t(MvN)

A I- x : t(M, 1_ (1.13)

In a similar fashion, for two intervals M and N over

the same type, their intersection, M c_ N, can be con-

structed by selecting only those ranges which are com-
mon to both domain intervals. The domain inference

rules are used to decompose the given ranges into sets of

disjoint ranges and common ranges. The set of common

ranges makes up the intersection interval.
A k mb < na

A F t((m rn_)c_ (n, ...n_), M) = t(M) (1.14)

A r- ma < na -< rnb <nb

A F t((_...mb)c_ (n.... nb),M) = t((n,...rr_),M) (1.15)

A F rna-<na-< nb--<mb i

(1.16)
A I- t((m,...mD ¢_ (n.... n)), M) = t((n,..alD, M) __

3.2. Tupie Subtvpil_g

Thiscollectionof inference rules explicidy types abe

tuplesthatclassifycomponent. We view a tuplertok--
m

oftyperecord,{h.....t.}.The type_must be afacet

type.The empty tuple(i.e.,thetuplecontainingno fac-

ets)isoftype{},thetupletypewithno components, w
The orderinwhich typesappearisnotarbitrary,since

position is used to distinguish facets.

Inference rule,s (2.1) and (2,2) allow for the defini :-

fion of a tuple and the extraction of an attribute from a

tuple. If el through c. are type expressions of type t_

A F el = t 1 ,j

A t- e_ = tn (2.,'

A.(r= [et ,en}) I- r" [tb...,tn} m

through t, respectively, then the tuple constructed from

them will be of the type resulting from the record con-_
structor ' {}' applied to those types. We use type expres-

sions to allow construction of attribute types without

requiring the earLier definition of all the types needed.
Note that the same syntax is used to denote both the defi-

nition of the tuple and its type. If attribute i in tuple r is

of type t then the result type for the component extrac_i_
r.i is t.

AI-r'{tl...tn} ___

Akl<i<n (2.,'-_

A I- r.i't

New tuple types are constructed from existing tupl_

types using the tuple constructor '&' which accepts two""

tuple types and returns a tuple type containing all compo_

hen t/bfboth-argument types.

A I-T 1 " {tl.... ,tin}

A I-"I"2"{tin+l,...,tn}
A I- I _<m < n (2.3I"

A I-TI &T2= {tl,..., tn} _

Rules (2.1) and (2.2) give the type semantics for

construction of tuples from attributes and for extraction

of an attribute from a tuple. Rule (2.4) characterizes th_._

notion of subtype between two tuples: One tuple is a

subtype of'another if it has all of the attributes of the

other (attributes common to both tuple types must be of_

the same type in both tuple types), and possibly some

additional attributes. This may seem contrary to the in- __
i

95

J

Abtl
: < y

AFtra

AFt.,

A_- l_<m_<n

(2.4)

A _"{tl,...,t_ ...,t,)_<{tl,...,tin}

tuitive notion of subtype being a restriction of a type,

Consider, however, that an instance of a subtype must be

abletobe usedasan instanceofitssupertype,and thus

must containallofthesupe_'l:_'sattributes.

Rule (2.5) extends record subtyping to handle the

AI- l_<m_<n

A _-t'_Stl

: (2.5)
A h t'm 5 tm

A 1- {t'l,...,t'm ,tn} 5 {tl ,tin}

situadon where a component of the subtype is a subtype
of the corresponding component in the supertype. Infer-

ence rule (2.4) required that the corresponding attributes

•_ be of ".hesame type. Rule (2.5") generalizes (2.4) by deal-

ing with subtyping of the attributes in addition to the re-

spective record types.

" 4. Ouery_ing the Repository_

-- The repository is partitioned by structural similarity

_; (package, function, etc.). Each partition is associated

with a set of facets which characterize and classify the

members of the partition. The particular facets and the

_ number of facet_ associated with a partition varies as

needed to adequately charac'terize it. A given facet may

- be unique to a partition, or it may be shared by many

._ partitions. The function facet from section 1.2. is a good

example of a facet likely to be shared by a majority of

, partitions in the repository.

•-.- Each partition instance has one or more lattice verti-

ces that correspond to the sets of section 2.1. There is

always the primary lattice vertex corresponding to the

"_ tupIe of facet value sets characterizing this component as

., a member of the partition. Additionally, there may be

zero or more secondary lattice vertices corresponding to

-" alternative characterizations of the component or charac-

terizations of subcomponents contained within this corn-

- portent.

4.1, Reposit.ory Structure

Two persistent storage areas comprise the actual

repository: a set of text files, and a set of database rela-

tions. The text fdes contain the body of the components

w

96

themselves, or descriptions of them (in the case of a

cornmerci=al l_roduct described in a local repository). The

database relations store the lattice vertices.

Each database relation corresponds to the lattice ver-

tex characterizing a particular repository partition. The

type of the relation is then the type of the partition, which

is the least upper bound of all the tuple types of the com-

ponent vertices comprising the partition. Efficient algo-

rithms for lattice operations such as LUB are described

in [1].

There is also a relation made up of facet value/syno-

nym pairs. This relation is described in section 4.2. Ad-

ditional relations may also be present if there are a.hema-

tive characterizations or subcomponents characteriza-

tions not equivalent to some primary partition characteri-
zation.

4.2. Ouerv E,,,aluatiQn

A query is a boolean expression containing predi-

cates and the operators and, or, and not. A predicate is

simply a constant of type tuple. When a user issues a

query, the query evaluator f'trst treats all of the facet val-

ues in the query as synonyms and replaces them with

actual facet values from the value/synonym relation. For

example, "database," "databases," "data base," and "data

bases" might all be replaced with "database." The evalu-

ator then locates all of the relations in the database whose

type conforms to some predicate of the query using the

inference rules of section 3. Specific mples which con-

form to some predicate are then retrieved from the con-

forming relations (once more using the inference rules).

The result is then a set of component references, which

can be optionally retrieved from the text storage area.

4.3. Browsing as Retrieval of Subt .vpes

Treating a query as an editable entity in the user in-

terface provides a straightforward browsing tool. For

example, attaching facets to a query comprised of a sin-

gle tzuple makes the query less general. Fewer and fewer

partitions conform to the tuple type. Specifying exactly

those facets found in a given partition restricts retrieval

to only that partition. Over-qualification results in

empty retrieval.

Removing facets from the query tuple makes the

query in turn mbre general. Specifying an empty tuple

results in all partitions of the repository conforming to

the type of the query tuple (all record types are subtypes

of the empty record {}).

5,Conclusions

The reuse architecture described here uses the

proven method of faceted classification as a starting

point for a retrieval mechanism providing both precise

characterization of components and flexible specification

of queries. Its simple user interface Jencapsulates a data

model founded in formal lattice and type theory.

[1] H. Ait-Kaci, R. Boyer, P. Lincoln, R. Nasr, "Effi-

cient Implementation of Lattice Operations," ACM

Transactions on Programming Languages and Sys-

tems, vol. 11, no. 1,p. 115, 1989.

[2] A. Albano, L. Cardelli, and R. Orsini, "Galileo: A

Strongly-Typed, Interactive Conceptual Language,"

ACM Transactions on Database Systems, vol. 10,

no. 2, p. 230, 1985.

[3] V.R. Basil.i, H. D. Rombach, I. Bailey, A. Delis, F.

Farhat, "Ado Reuse Metrics," Workshop Proceed-

ings: Ada Reuse and Metrics, Atlanta, Go., June

15-16, 1988.

[4] G. Booch, Software Components with Ada, ben-

jamin/cummings, Menlo Park, California, 1987.

[5] L. Cardelli, "A Semantics of Multiple Inheritance,"

in Semantics of Data Types (Proceedings Interna-

tional Symposium Sophia-Antipolos, France, June

1984), Springer-Verlag, Lecture Notes in Computer

Science, vol. 173, p. 51.

[6] L. Cardelli, P. Wcgner, "On Understanding Types,

Data Abstraction, and Polymorphism," ACM Corn,- w

puting Surveys, vol. 17, no. 4, p. 471, 1985.

[7] D. Eichmann, Polymorphic Extensions to the Re!a.

tional Model, Ph.D. dissertation, The Universit3, of

Iowa, Iowa City, Ia., August 1989. Also available as

technical report 89--05.

[8] R. Gagliano, G. S. Owen, M. D. Fraser, K. N. King,_,_

P. A. Honkanen, "Tools for Managing a Library of

Reusable Ado Components," Workshop Proceed- --

ings: Ada Reuse and Metrics, Atlanta, Ga., June D

15-16, 1988.

[9] A. Goidberg, D. Robson, Smalltalk-80: The Lan-

guage and Its Implementation, Addison-Wesley, .m
1983.

[10] C. Horn, "Conformance, Genericity, Inheritance z.",c?,

Enhancement, ECOOP 87-Proc. European Cor-

ference on Object--Oriented Programming, p. 223,
Paris, France, June 15-17, 1987.

[11] T. C. Jones, "Technical and Demographic Trends in---

the Computing Industry," Proceedings of the 1983 __

DSSD Conference, Topeka, Kansas, October, 198.3.._
[12] R. Prieto-Diaz, "Domain Analysis for Reusability,"

Proceedings of COMPSAC 87, Tokyo, Japan_ Octc,- --
.---=

ber, 1987, V
[13] R. Pricto-Diaz, "Facted Classification and Reuse

Across Domains," Unpublished Draft.

[14] R. Prieto--Diaz, P. Freeman, "Classifying Software w

for Reusability," IEEE Software, vol. 4, no. i, p. 6.
1987.

J

U

I

i

97

m

m

i

I

